Terminal Angle Constraint Guidance Law Based on SDRE Method
نویسندگان
چکیده
منابع مشابه
Lyapunov-Based Pursuit Guidance Law with Impact Angle Constraint
This paper presents Lyapunov-based pursuit guidance law against stationary targets. To design a nonlinear guidance law, Lyapunov candidate function is introduced to reduce the angle between the velocity vector of a missile and the distance vector between the missile and the target. Therefore, the proposed guidance laws have the characteristic of pursuit guidance. To attack a target from a prede...
متن کاملA Three Stage Terminal Fuzzy Guidance Law for Reentry Vehicles
An advanced guidance law is developed for reentry phase of a reentry vehicle. It can achieve small miss distance and desired impact attitude angle, simultanceously. To meet this requirment a guidance law based on the fuzzy logic approach is developed. It is partitioned into three stages. This guidance law does not require linearization of missile engagement model. Line-of-sight and flight path ...
متن کاملFuzzy Logic-based Terminal Guidance with Impact Angle Control
This paper presents a new formulation of terminal guidance law which controls the impact attitude angle while minimising the miss distance. The formulation is based on the fuzzy logiccontrol approach. Unlike many prevalent designs, the proposed guidance law does not require linearisation of missile-target engagement model. Numerical simulation results demonstrate that the proposed guidance law ...
متن کاملIntelligent guidance method based on differential geometric guidance command and fuzzy self-adaptive guidance law
Differential geometric guidance command (DGGC) is widely acknowledged as a better method of endoatmospheric interception than three-dimensional (3D) pure proportional navigation (PPN). DGGC can be regarded as an intelligent method due to its sophisticated sense of Lyapunov. However, traditional DGGC cannot guarantee line of sight (LOS) finite time convergence (FTC) to zero against maneuvering t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Earth and Environmental Science
سال: 2019
ISSN: 1755-1315
DOI: 10.1088/1755-1315/242/3/032060